
ISRAEL JOURNAL OF MATHEMATICS 92 (1995), 113-124 

UNIVERSAL ABELIAN GROUPS 

BY 

MENACHEM K O JMA N  AND SAHARON SHELAH* 

Department of Mathematics 

Carnegie Mellon University, Pittsburgh, PA 15213, USA 

and 

Institute of Mathematics 

The Hebrew University of Jerusalem, Jerusalem 9190.~, Israel 

ABSTRACT 

We examine the existence of universal elements in classes of infinite abelian 

groups. The main method is using group invariants which are defined 

relative to club guessing sequences. We prove, for example: 

THEOREM: For n > 2, there is a purely universal separable p-group in Rn 

if, and only if~ 2 ~o _< Rn. 

0. I n t r o d u c t i o n  

In this paper  "group" will always mean "infinite abelian group", and "cardinal" 

and "cardinality" always refer to infinite cardinals and infinite cardinalities. 

Given a class of groups K and a cardinal A we call a group G E K u n i v e r s a l  

for  K in A if IGI = A and every H E K with IH[ _< A is isomorphic to a subgroup 

of G. The objective of this paper  is to examine the existence of universal groups 

in various well-known classes of infinite abelian groups. We also investigate the 

existence of p u r e l y  u n i v e r s a l  groups for K in A, namely groups G E K with 

[G[ = A such that  every H E K with [H I < A is isomorphic to a p u r e  subgroup 

of G. 

The main set theoretic tool we use is a club guessing sequence. This is a predic- 

tion principle which has enough power to control properties of an infinite object 

* Partially supported by the United States-Israel Binational Science Foundation. 
Publication number 455. 
Received May 4, 1993 and in revised form June 20, 1994 

113 



114 M, KOJMAN AND S. SHELAH Isr, J. Math. 

which are defined by looking at all possible enumerations of the object. Unlike 

the diamond and the square, two combinatorial principles which are already ac- 

cepted as useful for the theory of infinite abelian groups, club guessing sequences 

are proved to exist in ZFC. Therefore using club guessing sequences does not 

require any additional axioms beyond the usual axioms of ZFC. Club guessing 

sequences are particularly useful in proving theorems from n e g a t i o n s  of CH and 

GCH. 

The paper is organized as follows: in Section 1 we define group invariants 

relative to club guessing sequences, and show that the invariants are monotone 

in pure embeddings. In Section 2 we construct various groups with prescribed 

demands on their invariants. In Section 3 these ideas are used to investigate the 

existence of universal groups for classes of torsion groups and classes of torsion 

free groups. It appears that cardinal arithmetic decides the question of existence 

of a universal group in many cardinals. For example: there is a purely universal 

separable p-group in Rn iff lq,~ > 2 ~~ for all n _> 2 (for n = 1 only the "if" part 

holds). 

This paper follows two other papers by the same authors, [KjSh 409] and 

[KjSh 447], in which the existence of universal linear orders, boolean algebras, and 

models of unstable and stable unsuperstable first order theories were examined 

using the same method. 

All the abelian group theory one needs here, and more, is found in [Fu], whose 

system of notation we adopt. An acquaintance with ordinals and cardinals is 

necessary, as well as familiarity with stationary sets and the closed unbounded 

filter. Knowledge of chapter II in [EM] is more than enough. 

Before proceeding, we first observe that in every infinite cardinality there are 

universal groups which are divisible: 

0.1 THEOREM: In every cardinality there is a universal group, universal p-group 

(for every prime p), universal torsion group and universal torsion-free group. 

Proof: These are, respectively, the direct sum of A copies of the rational group 

Q together with A copies of Z(p ~ for every prime p; the direct sum of A copies 

of Z(p~ the direct sum of A copies of Z(p ~ for every prime p; and the direct 

sum of A copies of Q. The universality of these groups for their respective classes 

follows from the structure theorem for divisible groups and the fact that every 

group (p-group, torsion group, torsion-free group) is embeddable in a divisible 
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group (p-group, torsion group, torsion-free group) of the same cardinality ([Fu] 

I, 23 and 24]). I 

1. T h e  invariant  o f  a group  re lat ive  to  t h e  ideal  id(C) 

A fixed assumption in this section is that A is a regular uncountable cardinal. 

We assume the reader is familiar with the basic properties of closed unbounded 

sets of A, and with the definition and basic properties of stationary sets. 

1.1 Definition: For a group G, nG de f {ng: g E G}. Two elements g, h E G are 

n - c o n g r u e n t  if g - h E nG. If g, h are n-congruent, we also say that h is an 

n - c o n g r u e n t  of g. 

1.2 Definition: 

(1) ([Fuchs, p.113]) Let G be group. A subgroup H C_ G is a p u r e  subgroup, 

denoted by H C_p~ G, if for all natural n, nH = nG N H. 

(2) An embedding of groups h: H --* G is a p u r e  embedding if its image h(H) 

is a pure subgroup of G. 

1.3 Definition: Suppose that A is a regular uncountable cardinal and that  G is 

a group of cardinality A, A sequence G = (G~: a < A / is called a A-filtration 

of G iff for all a 

(1) G~ C_ Gaq_l ,  

(2) G~ is of cardinality smaller than A, 

(3) if a is limit, then G~ = Uz<~ G~, 

(4) G = Uo<  Go. 
Suppose G = (G~: a < A) is a given filtration of a group G. Suppose c C_ A is 

a set of ordinals, and the increasing enumeration of c is (ai: i < i(*)). Let g E G 

be an element. 

1.4 Definition: Inv~(g,c) = {as E c: g E U~((G~,+I + n G ) -  (G~ + n G ) ) } .  

We call Inv~-(g,c) t h e  invariant  o f  t h e  e l e m e n t  g re lat ive  to  t h e  

A-fi l t ra t ion G and t h e  set  o f  indices  c. 

Worded otherwise, Inv , (g ,  c) is the subset of those indices a~ such that,  by 

increasing the group G ~  to the larger group G~+I,  an n-congruent for g is 

introduced for some n. 

As the definition of the invariant depends on a A-filtration, one may think that  

the invariant does not deserve its name. Indeed, given a group G equipped with 
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two respective A-filtrations G and G~, it is not necessarily true that  for g E G 

(1) I n v , ( g ,  c) = Inv , ,  (g, c). 

The solution to this problem is working with a club guessing sequence C = 

(ca: 6 E S) and the ideal id(C) associated to it. The idea is as follows: for any 

pair of A-filtrations G and G~ a group G there is a club E C A such that  for 

every a E E,  G~ = G~. So if we chose our set c in the definition of invariant 

to consist only of such "good" a-s, namely if c C_ E,  then it does not mat ter  

according to which A-filtration we work. But we cannot choose a set c which 

is a subset of every club E resulting from some pair of A-filtrations. What  we 

c a n  do is find a sequence of c-s with the property that  for every club E C A, 

stationarily many of them are subsets of E. Thus we will be able to define an 

invariant that  is independent of a particular choice of a A-filtration. Here is the 

precise formulation of this: 

1.5 Definition: A sequence (c~: 6 E S), where S C_ A is a stat ionary set, c~ C 6 

and 5 = sup c~ for every 6, is called a c lub  gue s s ing  s e q u e n c e  if for every club 

E C A the set {6 E S: c~ C_ E} is a stationary subset of A. 

The theorems asserting the existence of club guessing sequences will be quoted 

later. A club guessing sequence C = (c~: 6 E S) gives rise to an ideal id(C) over 

A - -  the gues s in g  ideal .  

1.6 Definition: Suppose that  C = (c~: 6 E S) is a club gussing sequence. We 

define a proper ideal id(C) as follows: 

A E i d ( C )  ~ A C _ A & 3 E C _ A ,  E c l u b , & V 6 E E M S ,  c ~ E .  

So a set of 6-s is small if there is a club E which it fails to guess stationarily 

often, namely there is no 6 E A such that  c~ C_ E. 

1.7 LEMMA: I[ 'C is a club guessing sequence as above, then id(C) is a proper, 

A complete ideal. 

Proo~ That  id(C) is proper means that  it does not contains every subset of A. 

Indeed, S ~ id(C), as it guesses every club. That  id(C) is downward closed is 

immediate from the definition. Suppose, finally, that  Ai, i < ( ,) ,  i(*) < A are 

sets in the ideal. We show that  their union A def Ui<i(,) Ai is in the ideal. Pick 

a club Ei for every i < i(*) so that  6 E Ai =~ c~ ~ Ei. The set E = ~<~( , )  E~ is 

a club. Suppose that  d E A. Then there here is some i < i(*) such that  6 E Ai. 

Therefore c~ ~ Ei. But E C E~, so necessarily c~ ~ E. Thus, A E id(C). 1 
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We adopt the phrase "for almost every 6 in S", by which we mean "for all 

E S except for a set in id(C)". 

1.8 LEMMA: Suppose that C = (cz: ~ E S) is a club guessing sequence on S C_ A. 

Suppose that G and -G I are two A-filtrations of  a group G of cardinality A. Then 

for almost every 6 E S, (1) holds for every g E G. 

Proof." The set of a < A for which G~ = G~ is a club. Let us denote it by E. 

If for some 6, c6 C_ E holds, then for every g E G it is true that Inv , (g ,  c6) = 

Inv~,(g, c6). But as C is a club guessing sequence, by definition, for almost every 

~,c~C_E. I 

We define now the desired group invariant. 

1.9 Definition: Suppose that C is a club guessing sequence and that G is a 

A-filtration of a group G of cardinality A. Let 

(1) P~(G, C) = {Inv~-(g, c~): g E G}, 

(2) Inv(G, C) = [(Pz(G, C): ~ E S)]ia(U )- 

The second item should read "the equivalence class of the sequence of P~ 

modulo the ideal id(C)", where two sequences are equivalent modulo an ideal if 

the set of coordinates in which the sequences differ is in the ideal. 

1.10 LEMMA: The definition of Inv(G,G) does not depend on the choice 

A-filtration. 

Proof: Suppose that G, G'  are two A-filtrations. By the regularity of A, there 

exists a club E such that for every a E E, G~ = G~. Therefore for every ~i such 

that c~ _c E and every g E G, Invu(g,c~) = Inv~,(g, ce). This means that for 

every ~i such that c~ C_ E, P~(G, C) = P~('G',-C). But for almost all ~ it is true 

that c~ C_ E, therefore the sequences (P~(G,C): ~ E S) and (P~(G',C): ~i E S) 

are equivalent modulo id(C). I 

We remark at this point that the definition just made depends on the existence 

of a club guessing sequence! Strangely enough, we can prove the existence of 

club guessing sequences for regular uncountable cardinals A for all such cardinals 

e x c e p t  R1. 

Let us now quote the relevant theorems which assert the existence of club 

guessing sequences: 
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1.11 THEOREM: I f  l~ and A are cardinals, #+ < A and A is regular, then there is 

a club guessing sequence (c~: 6 E S> such that the order type of each c~ is >_ #. 

Proo~ In [Sh-e, new VIw [Sh-e, old IIIw 

We proceed to show that Inv is preserved, in a way, under pure embeddings. 

1.12 LEMMA: Suppose that H and G are groups of cardinality A and that H 

and G are A-filtrations. Suppose that C is a club guessing sequence on S C_ A. 

I f  h: H -~ G is a pure embedding, then for almost every ~ E S, P~(H, C) C_ 

P6(G,C). 

Proob Suppose for simplicity that H C_p~ G, namely that  the embedding is the 

identity function. The set E1 aef {a: H N G~ = Ha} is a club. Define for every 

natural number n a function fn(Y) on G as follows: 

s o m e x � 9  E n G }  i f { x : x � 9 1 4 9  
f,~(y) = # 0 

0 otherwise 

There is a club E2 such that  Ga is closed under f,~ for all n for every a E E2. 

E = E1 N E2 is a club. 

1.13 CLAIM: Suppose that h 6 H and that a 6 E.  Then h has an n-congruent 

in G~ (in the sense of G) iff h has an n-congruent in Ha (in the sense of H). 

Proo~ One direction is trivial. Suppose, then, that  there is an n-congruent 

g E Ga. Let h' = In(g). By the definition of f~, h' + g 6 nG~; also h - g 6 nG. 

Therefore h -  h' E n G .  As H C_p~ G, h - h '  6 n i l ,  and therefore h' is an 

n-congruent of h in the sense of H. | 

The proof of the Lemma follows now readily: For almost every /~ E S it is 

true c~ C_ E. Therefore for every such 6, every h E H and every n, h has an 

n-congruent in H~ iff h has an n-congruent in G~. Therefore Invg(h,  c~) C_ 

Inv , (h ,  c~). | 

2. Constructing groups with prescribed INV 

In this section we construct several groups with prescribed demands on their 

INV. These groups are used in the next section to show that in certain cardinals 

universal groups do not exist. The method in all constructions is attaching to a 

simply defined group points from a topological completion of the group. 
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a. CONSTRUCTIONS OF p-GROUPS. 

2.1 THEOREM: I f  A is a regular uncountable cardinal, C = (c~: 6 E S) is a club 

guessing sequence and A~ C_ c~ is a given set of order type w, then there is a 

separable p-group G of cardinality A and A-filtration G such that A~ E P~( G, C) 

for every 6 E S. 

2.2 Remark: This implies by Lemma 1.12 that for every separable p-group G I 
- - I  

of cardinality A which purely extends G and a A-filtration G ,  for almost every 

5, A~ E P~(G', C). 

Proof: For every n, let B ,  = ~ n e  ~ An where A n is a copy of Zp, with generator 

a n. Let G o = ~]~n Bn, and let G 1 be the torsion completion of G ~ G 1 may be 

identified with all sequences (xl,  x2 . . . .  ) where x,~ E Bn and such that  there is a 

(finite) bound to {o(x,~)}n. For details see [Fuchs II,14-21]. The group we seek 

lies between G o and G 1, and is a pure subgroup of G 1. 

Let us make a simple observation: 

(1) If x = (Xl, X2, . . . )  and y = (Yl, Y2,...) belong to G 1 and x - y E pUG1, 

then x~ = Yi for all i ~ n. 

Proof: Let z~ -- x ~ - y i ,  zi E Bi. As B~ApnG1 = 0 f o r i  < n, we are done. 

I 

For every 6 E S let (a~: n E w) be the increasing enumeration of A~. Denote by 

~ the sequence ( a~ , . . . ,  a~). Let b ~ E G 1 be (x~, x~,. . .) where x~n = pn-lan~. 

So xn is of order p and height n - 1. Consequently, b ~ is of order p. Let us denote 

x~ def ~Pk- '~ - l an~  if n < k 
pn 

0 otherwise 

and also let ~ d~f 0. Let b~ = ( . . . .  ~-~,...). Let G be the subgroup of G 1 

generated by G o together with {b~: 6 E S, n < w}. Having defined G, let us 

specify a A-filtration G. For every i < A let G~ be ({a~: ~ E <~i} U {b~: ~ E 

S, ~ < i ,  n <w}) .  

2.3 CLAIM: Inv~(b ~ c~) --- A~. 

Proof'. We should show that  the set of indices i with the property that in 

Gi+l some congruent of b~ appears coincides with A~. Suppose first, then, 

that  i = an for some n. (x~, . . . ,x~n,0 ,0 , . . . )  is clearly a pn-congruent of b~, 
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as b~ - (x~ l , . . . ,  x~) = pUbS. Conversely, suppose t h a t / <  an and suppose to the 

contrary that  there is some y = (Yl, Y2 . . . .  ) E Gi such that  b ~ - y E PUG. Then 

Yi = xi for all i _< n by (1). But y E Gi implies that  Yn E Gi - -  a contradiction 

to i < an.  I 

b. CONSTRUCTIONS OF TORSION-FREE GROUPS. We start  by constructing a 

torsion-free homogeneous group of a given type t = ( r  co, 0, oc , . . . ) .  We 

recall that  a characteristic x(g) of an element g E G is the sequence (kl, k2, . . . )  

where k~ is the p-height of g for the l-th prime. A height can be oc. A type t is 

an equivalence class of characteristics modulo the equivalence relation of having 

only a finite difference in a finite number of coordinates. A homogeneous group 

is a group in which all elements have the same type. We call a type t a p-type 

if t = ( o c , . . . ,  oc, 0, oc , . . . )  where the only coordinate in which there is 0 is the 

number of p in the list of primes. 

2.4 THEOREM: For every uncountable and regular cardinal A, a club guessing 

sequence C = (c~: ~ E S) and given sets A~ E c~, each A~ of order type w, there 

is a homogeneous group G of cardinality A with p-type t and a A-filtration G 

such that for every 5 E S, A~ E P~(G, C). 

2.5 Remark: This means that  for every pure extension G ~ of G, for almost every 

5 E S, A~ E P~(G', C). 

Proo~ This proof resembles the proof of Theorem 2.1. Let G O = (~:~ Qp (where 

Qp is the group or rationals with denominators prime to p). We index the iso- 

morphic copies of Qp by ~ E '~A and fix a n, an element a n of characteristic 

( c~ , . . . ,  c~, 0, c~ , . . . )  in the y-th copy of Qp. Let G 1 be the completion of G O in 

the p-adic topology. Let (~ (n ) :  n < w) be the increasing enumeration of A~, 

and let ~ = (q~(0), . . .  , ~ ( n -  1)). Let b~,n = ~-~kpk-nan~. The rest is as in the 

proof of Theorem 2.1. I 

3. T h e  m a i n  resul ts  

a. THE UNIVERSALITY SPECTRUM OF TORSION GROUPS. There is a universal 

torsion group in A iff there is a universal p-group in A for every prime p. We 

therefore may focus on p-groups alone. There is a universal divisible p-group in 

A, the group (~x Z(p~) ,  therefore the first interesting question to ask in torsion 

groups is whether there is a universal r e d u c e d  p-group. Here the answer is "no": 
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3.1 THEOREM: I[ A is an infinite cardinal (not necessarily regular, not necessarily 

uncountable), then there is no universal reduced p-group in A. 

Proof: There are p-groups of cardinality A of Ulm length a for every ordinal 

a < A +. As u(A) <_ u(B)  whenever A C_ B, and u(A) < A +, for every group of 

cardinality A, no p-group of cardinality A can be universal. | 

We put a further restriction on the class of p-groups, by demanding that  the 

Ulm length of a group be at most w.* We restrict ourselves then to the class of 

separable p-groups. On this class see [Fu] vol II, chapter XI. 

b. UNIVERSAL SEPARABLE p-GROUPS. We investigate the universality spec- 

t rum of the class of separable p-groups. 

3.2 THEOREM: IIr A = A ~~ then there is a purely universal separable p-group in 

A. 

Proof'. Let B = ~ Bn where Bn = ~ Zv..  The torsion completion of B, 

denoted by G, is of cardinality ]B[ ~~ = A ~~ = A and is puely universal in A. To 

see this let A be any separable p-group of cardinality A, and let BA be its basic 

subgroup. BA is purely embeddable in B, and this gives rise to a pure embedding 

of A into G. | 

We see then, that  for every n such that  Nn _> 2 ~~ there is a purely universal 

separable p-group in lqn. As CH implies that  in every lq~ ~ -- Nn for all n, it 

follows by 3.2 that  there is a purely universal separable p-group in every R,~. I t  

is not uncommon tha t  CH decides questions in algebra. I t  is much less common, 

though, that  a negation of CH or of GCH does the same. The following theorem 

uses a negation of GCH as one of its hypotheses. 

3.3  THEOREM: A iS regular and there is some # such that #+ < A < #~o, then 

there is no purely universal separable p-group in A. 

Proof'. By/~+ < A and Theorem 1.11, we may pick some club guessing sequence 

C = (c6:/5 E S / where S is a stat ionary set of A and otpc~ _> p. Suppose G is 

a given separable p-group. We will show that  G is not universal by presenting a 

separable p-group H of cardinality A which is not embeddable in G. We choose 

a A-filtration G of G and observe that  [P~(G, C)[ _< A for every 8. A s / ~ 0  > A, 

* One can make finer distictions here by considering the class of all p-groups of Ulm 
length which is bounded by an ordinal a. But we do not do this here. 
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there is some A~ C_ c,,  of order type w, which does not belong to P,(G, C). By 

Theorem 2.1, there is a group H of cardinality A such that for every embedding 

r H ~ G, for almost every 6, A, E P,(G, C). This can hold only emptily, that is, 

if there are no such embeddings, because A,  was chosen such that A, q~ P,(G, C). 
| 

3.4 COROLLARY: For n >_ 2, there is a purely universal separable p-group in Rn 

if, and only if, 2 ~~ <_ Rn. 

Proof." If Rn _> 2 ~~ then R~ ~ = Rn and by Theorem 3.2 there is a purely universal 

separable p-group in R~. Conversely, if n _> 2 and R~ < 2 ~~ then by 3.3 there is 

no purely universal separable p-group in R~ | 

c. THE UNIVERSALITY SPECTRUM OF TORSION-FREE GROUPS. We may re- 

strict discussion in this Section to reduced torsion-free groups. We proceed to 

show first that in regular A which satisfy A -- A s~ there is a universal reduced 

torsion-free group. The proof of the next theorem is an isolated point in the paper 

with respect to the technique, because it employs model theoretic notions (first 

order theory, elementary embedding and saturated model). These are available 

in every standard textbook on model theory, like [CK]. 

3.5 THEOREM: If)~ ~- A ~~ ~ 2 ~~ then there is a universal reduced torsion-free 

group in A. 

Proof'. Let T be a complete first order theory of torsion free-groups. It is 

enough to find a reduced group GT of cardinality A such that GT ~ T and for 

every H ~ T, H is embedded in GT; for if we have such a G for every T, the 

group (~T GT is of cardinality A (there are only 2 s~ complete first order theories), 

and is evidently universal. 

Let, then, G~c be a saturated model of T of cardinality A. Let D be its maximal 

division subgroup, and let GT def G~/D.  GT is isomorphic to the direct summand 

of D, and is therefore torsion-free and reduced. Suppose that H ~ T is reduced 

(and, clearly, torsion-free). There is an elementary embedding f :  H ~ G~. 

3.6 CLAIM: I m f  N D = 0 

Proof'. Suppose 0 # a E H and f (a)  E D. As f is elementary, a is divisible in 

H by every integer n. As H is torsion-free, the set of all divisors of a generates 

a divisible subgroup of H,  contrary to H being reduced. 
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We conclude, therefore, that  ] defined by ](a) = f (a)  + D is an embedding of 

H into GT. | 

Next we show that  below the continuum there is no purely-universal reduced 

torsion-free group. The reason for this is trivial: there are 2 ~~ types (over the 

empty  set) in this class. Therefore we do not need the club guessing machinery, 

and gain an extra case - -  the case where A = b~l - -  in comparison to Corollary 

3.4. 

3.7 THEOREM: I f  A < 2 ~~ then there is no purely-universal reduced torsion- 

free group in cardinality A. In fact, for every reduced torsion-free group G of 

cardinality A there is a rank-1 group R which is not purely embeddable in G. 

Proo~ As A < 2 a~ there is a characteristic (kl, k2, . . . ) ,  with all k~ finite, which 

is not equal to )cG(g) for every g E G (the definitions of c h a r a c t e r i s t i c  and t y p e  

are from [Fu], II, 85). Let R be a rank-1 group such that  )Cn(1) -- (kx, k2 . . . .  ). 

As pure embeddings preserve the characteristic, R is not purely embeddable in 

G. | 

We look now at a class of torsion-free groups which do not have many types 

above the empty set. This is the class of homogeneous groups (a group is 

h o m o g e n e o u s  if all non-zero elements in the group have the same type. See 

[Fu] II  p.109). Here we are able again to prove that  there is no purely universal 

group in the class in cardinality A < 2 a~ if A > lql. However, rather than using 

types over the empty set, we are using invariants. 

3.8 THEOREM: I f  A is a regular cardinal, #+ < A < #~o for some Iz, and t is a 

given p-type, then there is no purely-universal homogeneous torsion-free group 

of type t in A. Even more: for every torsion-free group G of size A there is a 

homogeneous group of size A whose type is t which is not purely embedded in G. 

Proo~ Let G be any torsion-free group of size A, and fix some A-filtration G. 

Let C be a club guessing sequence, and for every ~ E S let A~ be such that  

A~ q~ P~(G,C). Such an A~ exists, as [P~(G,C)[ <_ i < 2 ~~ while there are 2 ~~ 

subsets of c~. By Theorem 2.4, there is a homogeneous group H with type t such 

that  A~ E P~(H, C) for every 6 C S. If there were a pure embedding r H --~ G, 

then by Theorem 1.12, for almost every 5 E S, A~ would be in P~(G, C). But by 

the choice of A~ this is impossible. | 
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